
Fibonacci Graphs

Tao Gaede

November 29, 2020

Abstract

This paper was the result of a fun exploration of the following challenge: try to construct families
of graphs that contain as many Fibonacci numbers within their structure as possible. To that
end, I present constructions of a cycle, and two generalizations of the Fibonacci tree (here called a
Fibonacci branch). Since the Fibonacci number sequence is recursive, in every case, the constructed
graphs reflect this recursion. A possibly significant result of this paper is the use of a balancing
parameter m found in the well known proposition below as a way to inversely relate Fibonacci tree
(as defined in this paper) trunk size with the complexity of its branches.

Introduction

We will begin with the Fibonacci numbers and the above mentioned proposition, followed by my
construction for a Fibonacci cycle. Fibonacci branches (in the literature called Fibonacci trees) and
what I’m calling here Fibonacci trees, and Super Fibonacci trees will be defined in the final section.
We will conclude with a discussion on the graph structure implications of the balancing parameter
m.

Definition (Fibonacci numbers): The Fibonacci numbers are defined as follows:

f0 = 1, f1 = 1,

fn = fn−1 + fn−2

The following proposition will be used in the construction of Fibonacci graphs, and is a general-
ization of the above definition.

Proposition

When n > m ≥ 1, any Fibonacci number is the sum of two terms, each a product of two smaller
Fibonacci numbers.

fn = fmfn−m + fm−1fn−m−1 (1)

Proof The proof will proceed by induction on m.

Inductive Hypothesis P (m) := fn = fmfn−m + fm−1fn−m−1

Base Case Let m = 1, then

P (1) := fn = f1fn−1 + f0fn−2 ⇔ fn = (1)fn−1 + (1)fn−2 = fn−1 + fn−2

which is the definition of the Fibonacci numbers.

1

Inductive Step Suppose for some m that P (m) is true, then we want to show that this implies
that

P (m+ 1) := fn = fm+1fn−m−1 + fmfn−m−2

Beginning from the RHS of P (m+ 1), we show that it is equal to the RHS of P (m)

fm+1fn−m−1 + fmfn−m−2 = (fm + fm−1)fn−m−1 + fmfn−m−2

= fm(fn−m−1 + fn−m−2) + fm−1fn−m−1

= fmfn−m + fm−1fn−m−1

as desired. Thus by mathematical induction, P (m) is true for all n > m ≥ 1. �

Remarks on m Notice that the m parameter can be chosen for a given n. This means we can
represent a Fibonacci number as the sum of two products with factors all being smaller Fibonacci
numbers, the values of which depend on m. Knowing this arithmetic meaning of m, we will use
the m parameter from this proposition in some of the graph constructions that follow to explore its
graphical meaning as well.

Fibonacci Cycles

The Fibonacci cycle defined below is constructed with an edge multiset to record the order and
frequency of the edges that link the components of the cycle. After defining the cycle and stating
its relationship with Fibonacci numbers, we’ll show that these edges correspond to corresponding
word.

Definition (Fibonacci Cycle): A Fibonacci cycle, Cfn,M is an undirected cycle graph with fn
vertices and edges constructed recursively as follows:

1. Let M = ∅ be a multiset. We create a recursive sequence s of K2s and P3s as follows:

Set s0 = K2 and s1 = P3, where for both s0 and s1 we let one of their two vertices with degree
1 be called ”left” and the other ”right”. Now for the recursive step:

si = (si−2,mi, si−1), i ∈ [2, n]

where mi denotes an edge incident to the right vertex of si−2 with degree 1 and the left vertex
of si−1 with degree 1. We include mi into M .

2. Define m1 as the edge incident to both the left and right vertices of sn. Include m1 into M .

3. The resulting graph is a cycle, denoted Cfn,M

Fibonacci Cycle Properties When n ≥ 2,

1. fn+2 = |V (Cfn,M)| = |E(Cfn,M)|

2. fn+1 = |E(Cfn,M)−M |

3. fn = |M |

4. fn−1 = number of P3s in Cfn,M −M

2

5. fn−2 = number of K2s in Cfn,M −M

6. There are fn−1 non m2 edges in M

7. There are fn−2 m2 edges in M . More generally, there are fn−i mi edges in M , i ∈ [2, n]

Fibonacci cycles for a given n therefore contain all Fibonacci numbers fi where i ∈ [0, n+ 2] in
their structure.

Figure 1: Each component from top to bottom are Cfn,M s with the m1 edge removed for n ∈ [0, 6].

The Linking Edges Characterize an Interesting Class of Words Let wn be the sequence
of indices from the M edges of Cfn,M in cyclic ordering such that the index of m1, 1, is the final
entry. Then wn has exactly fn−i i elements for each i ∈ [2, n] and exactly f1 1.

Examples of Wn for n ∈ [1, 6]:

n = 1⇒ w1 = 1

n = 2⇒ w2 = 21

n = 3⇒ w3 = 321

n = 4⇒ w4 = 24321

n = 5⇒ w5 = 32524321

n = 6⇒ w6 = 2432632524321

We can construct these words in terms of word concatenation and morphisms as follows:

wn = wn−2wn−1,with the morphism 1→ n, if 1 is not the final entry of wn. (2)

Characterizing the non-linker Edges of a Fibonacci Cycle Since the M edges of Cfn,M are
always incident to either a K2 or a P3, between these linking edges of M are either a pair of adjacent
edges in P3 or a single edge of K2. We can define another word w′n that describes the cyclic ordering
of these P3s and K2s where the edges in P3 are denoted by ”b” and the edge in K2 can be denoted
by ”a”. w′n can be defined by the following morphisms applying to the elements in w′n−1: a → b
and b→ ab. These w′n words are known in the literature as Fibonacci words.

3

Distribution of Letters in Fibonacci Words Ellis and Ruskey et al. in [2] proved that both
the index sets of a and b, respectively in any w′n are maximally even sets.1. A maximally even
k-subset of [t] is a set that is a translation of

{ ti
k

: i ∈ [0, k − 1]} (3)

Examples of Fibonacci words for n ∈ [1, 6]:

n = 1⇒ w′1 = b

n = 2⇒ w′2 = ab

n = 3⇒ w′3 = bab

n = 4⇒ w′4 = abbab

n = 5⇒ w′5 = bababbab

n = 6⇒ w′6 = abbabbababbab

We can then characterize Fibonacci cycles in terms of wn and w′n by defining a new word Wn as
follows:

Wn = (w′ni
wni

: i ∈ [1, n])

Examples of Wn for n ∈ [1, 6]:

n = 1⇒ w′1 = b1

n = 2⇒ w′2 = a2b1

n = 3⇒ w′3 = b3a2b1

n = 4⇒ w′4 = a2b4b3a2b1

n = 5⇒ w′5 = b3a2b5a2b4b3a2b1

n = 6⇒ w′6 = a2b4b3a2b6b3a2b5a2b4b3a2b1

Since Wn is an equivalent characterization of Cfn,M , Wn has analogous relationships with the
Fibonacci numbers:

Let c(x) denote the frequency element x occurs in Wn. When n ≥ 2,

1. fn+2 = |Wn|+ c(b) = 2c(b) + c(a) + |wn|

2. fn+1 = c(b) + |wn| = |Wn| − c(a), ie number of non-a elements in Wn

3. fn = |wn| = |w′n| = |Wn|/2

4. fn−1 = c(b)

5. fn−2 = c(a)

6. fn−i = c(i), i ∈ [2, n]

7. f0 = c(1)

1More precisely, [2] shows that Fibonacci words are a subclass of an object class they call Euclidean strings, but
at the end of their paper they show that the index sets for the letters in Euclidean strings are maximally even sets.

4

Fibonacci Branch

Definition (Fibonacci Branch): Bfn is a Fibonacci branch where

Bf1 = K1,which is called the root vertex;

Bf2 = Bf1v,where v is adjacent to Bf1 , and is a non-root vertex.

Bfn is constructed from Bfn−1
by adding to each non-root vertex with degree less than 3 a new

adjacent non-root vertex.

Figure 2: From left to right, Bfn Fibonacci branches for n ∈ [1, 8]. Green vertices are roots and blue
vertices are non-roots.

Fibonacci Branch Properties

1. When n > 2, Bfn has:

(a) fn vertices and fn − 1 edges.

(b) fn−2 − 1 vertices of degree 3,

(c) fn−3 vertices of degree 2, and

(d) fn−2 + 1 vertices of degree 1.

2. Bfn+1
has fn−1 more vertices than Bfn

Branch Growth Let B denote the set of all Fibonacci tree branches.
Then define g : B → B algebraically as g(Bfn) = Bfn+1

, and graphically by adding to each
non-root vertex with degree less than 3 a new adjacent vertex in Bfn .

Additionally, define g−1(Bfn) = Bfn−1
graphically by removing all non-root degree 1 vertices

from Bfn .

g Invertibility g−1(g(Bfn)) = Bfn .
Since g only adds new vertices to existing vertices in Bfn with degree 1, all degree 1 vertices

in Bfn are degree 2 vertices in g(Bfn) and all newly added vertices in g(Bfn) are degree 1, thus
removing all these newly added degree 1 vertices, returns g(Bfn) back to Bfn . �

5

Fibonacci Tree

Fibonacci Tree (Definition): Let τ = Pfm be a path of size fm, where m < n, then a Fibonacci
tree Tn,m is a tree with a central path τ , where Tn,m is defined below:

First, define

S = Bfn−m

L = Bfn−(m−1)

where S is called a small branch, and L is called a large branch.
Second, define the initial cases for Tn,m

Tn,1 = L

Tn,2 = LeS

where e ∈ E(τ) is incident to the roots of both L and S. Finally, here is the recursive step:

Tn,m = Tn,m−1eTn,m−2 (4)

Again, e is some edge in E(τ). The rightmost Fibonacci branch root in Tn,m−1 is adjacent to
the left most Fibonacci branch root of Tn,m−2 through e.

Let τ be called the trunk of Tn,m.

Fibonacci Tree Properties These properties all follow from the proposition at the beginning of
this document:

1. fn = |V (Tn,m)| = |E(Tn,m)|+ 1

2. fm is the trunk size of Tn,m (by definition)

3. fm−1 is the number of L Fibonacci branches in Tn,m

4. fm−2 is the number of S Fibonacci branches in Tn,m

5. fn−(m−1) = |L|

6. fn−m = |S|

6

Remarks on m In the context of Fibonacci trees, when m is larger (longer trunk), the branching
in the Fibonacci tree is less complex because there are less vertices available to distribute across the
branches, but when m is smaller, then the branching becomes more complex. m can therefore be
seen as a measure of the level of branching in the tree inversely proportional to the size of its trunk,
given n.

Fibonacci Tree Growth Let T be the set of all Fibonacci trees. Then define gt : T → T
algebraically as gt(Tn,m) = Tn+1,m and graphically as follows: apply the branch growth operation
gb to each branch B ∈ Tn,m.

Similarly, g−1t (Tn,m) = Tn−1,m is defined by applying g−1b to every branch in Tn,m, but it is only
defined when m < n− 1, since Tn−1,m does not exist when n− 1 = m. The invertibility of gt follows
from the invertibility of gb, so g−1t (gt(Tn,m)) = Tn,m, when m < n− 1.

Super Fibonacci Tree

Definition (Super Fibonacci Tree): A super Fibonacci tree is like a Fibonacci tree except its
branches are smaller Fibonacci trees with possibly their own trunks rather than just branches. We
again take advantage of the proposition by using m to adjust branching complexity, but in super
Fibonacci trees we’ll be partitioning m into a vector M to get handle on the distribution of this
branching complexity throughout.

Let M = (m1,m2, ...,mfm) be the sequence of positive integers denoting the trunk sizes of each
Fibonacci tree incident to a trunk vertex of the super Fibonacci tree. A super Fibonacci tree is
defined as a sequence:

T ′n,M = (Tj,mi
:

{
j = n−m, if w′

mi
= a

j = n− (m− 1), if w′
mi

= b
, i ∈ [1, fm]) (5)

This sequence definition means that if Fibonacci trees are neighbours in the sequence, then their
leftmost vertex in their respective trunks are incident to neighbouring vertices in τ(T ′n,M). The
vertices in τ(T ′n,M) are the roots of its sub Fibonacci trees.

Figure 3: This is the T ′9,(3,2,1,2,1) = (T5,3, T6,2, T6,1, T5,2, T6,1) super Fibonacci tree (m = 4). The
solid brown edges form the super tree trunk, while the broken brown edges form the trunks of
the sub Fibonacci trees. Notice that the third and fifth trees don’t have their own trunks because
m3 = m5 = 1, so these trees are actually equivalent to the Fibonacci branch Bf6 . Green vertices
are roots while blue are non-roots.

7

Super Fibonacci Tree Properties

1. fn = |V (T ′n,M)| = |E(T ′n,M)|+ 1

2. fm−1 is the number of larger sub-Fibonacci trees of T ′n,M with size fn−(m−1)

3. fm−2 is the number of smaller sub-Fibonacci trees of T ′n,M with size fn−(m−2)

Remarks on M M provides a way of selecting a distribution of the branching complexity through-
out a super Fibonacci tree.

Concluding Remarks

In this paper, we began with a well known proposition on Fibonacci numbers and explored some of
its implications in cycle and tree constructions. The link between the Fibonacci cycle construction
and maximal evenness was noted. Building off of the known construction of Fibonacci branches
(Fibonacci trees in the literature), we generalized this construction twice over, because it was fun
and m had interesting graphical meaning. Nice graph pictures were also viewed in the reading and
writing of this document. I hope it was an enjoyable read! This was certainly fun to put together.

References

[1] N.N. Vorob’ev. Fibonacci numbers. Dover edition, 2011 (originally published 1961) (In partic-
ular, page 10)

[2] J. Ellis, F. Ruskey, J. Sawada, J. Simpson (2003). Euclidean Strings. Theoretical Computer
Science 301, pp. 321-340.

8

