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Outline of the Talk

1 Fundamental concepts relating pitch classes/notes to sets
2 Integer compositions as things that express the "shape" of

harmonies and sets generally.
3 Can define Tonnetz set systems in terms of these integer

compositions
4 Mathematical properties and questions regarding Tonnetz

systems
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Pitch Classes

Let [n] = {0,1, ...,n − 1}.
When n = 12, there are two ways each element of [12]
can represent pitch classes cyclically:

Incrementing by perfect fifth intervals:

0 1 2 3 4 5 6 7 8 9 10 11
C G D A E B F# C# Ab Eb Bb F

Incrementing by semitone intervals:

0 1 2 3 4 5 6 7 8 9 10 11
C C# D Eb E F F# G Ab A Bb B

Tao Gaede Combinatorics and Music
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Harmonies

Let t be a subset of [n] with size k . Then t is called a
k-subset of [n].
When n = 12, t represents a harmony with 1 ≤ k ≤ 12
pitch classes.
When 1 < k < 5, t is called a chord, and when
5 ≤ k ≤ 12, t is called a scale.
Example: the C-major scale represented in semitone and
fifth ordering, respectively.{

{C,D,E ,F ,G,A,B} → {0,2,4,5,7,9,11}
{F ,C,G,D,A,E ,B} → {11,0,1,2,3,4,5}

Tao Gaede Combinatorics and Music
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Studying Harmonies

A useful way to study harmonies as sets is to consider the
consecutive differences between their pitch classes, these are
called intervals:

1 Order them cyclically (either semitone or fifth ordering). Eg:

Fifth Ordering: {C,G,E} → {0,1,4}
Semitone Ordering: {C,E ,G} → {0,4,7}

2 Consider the consecutive differences modulo 12 between
their elements. Eg:

Fifth Ordering: {0,1,4} → (1,3,8)
3 The resulting object is a rotation invariant composition

of n = 12. We want rotation invariance because we
consider harmony inversions to be equivalent. Eg:
(C,E ,G) = (E ,G,C).

Tao Gaede Combinatorics and Music
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Why Compositions are Interesting

Rotation invariant compositions of 12 are interesting
musically, because they combine the intervals between the
pitch classes in a harmony into one object.
This allows us to classify harmonies by their shape, or
more formally harmonic species.

The Major Triads =


{0,1,4}, {1,2,5}, {2,3,6},
{3,4,7}, {4,5,8}, {5,6,9},
{6,7,10}, {7,8,11}, {8,9,0},
{9,10,1}, {10,11,2}, {11,0,3}.

→ (1,3,8)

Tao Gaede Combinatorics and Music
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Compositions are Interesting Continued

These compositions give us a concise way to describe the
combinatorial shape of harmonies.

Now, we can investigate patterns involving these shapes

Ultimately, the hope is that some of such investigations
inform new ways of thinking about music harmony.

Tao Gaede Combinatorics and Music
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More Definitions Relating to Compositions

Let C be a rotation invariant n-composition. Then

Define R(C) as C but with its elements in the reversed
cyclic ordering. R(C) is called the reversal, or flip, of C.

If C = R(C), then C is achiral.
Eg: R(1,2,1,3) = (3,1,2,1) = (1,2,1,3)

If C 6= R(C), then C is chiral.
Eg: R(2,4,6) = (6,4,2) = (2,6,4) 6= (2,4,6)

w(C) is called the weight of C, and it is the sum of all its
elements. It is always true that w(C) = n.

Tao Gaede Combinatorics and Music
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Tonnetz System Definition

The tonnetz system Tn,k (C) is the k -subset family of [n]
that includes all k -subsets whose consecutive differences
(modulo n) are given by the rotation invariant integer
compositions C and R(C). Can also denote simply as
T (C) since k = |C| and n = w(C).
Examples:

T6,3(123) =

{
{013}, {124}, {235}, {340}, {451}, {502},
{053}, {104}, {215}, {320}, {431}, {542}

T5,3(122) = {{013}, {124}, {230}, {341}, {402}}

T6,4(1212) = {{0134}, {1245}, {2350}}

Tao Gaede Combinatorics and Music
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Size

The size of a Tonnetz system is given by:

|Tn,k (C)| = cn
r

(1)

where C = x r for some possibly smaller composition x and
integer r ; and c = 1 if C is achiral, c = 2 otherwise.
Note: r |n because n = r · w(x).

(r,c)
(1,1) : T5,3(122) = {{013}, {124}, {230}, {341}, {402}}
(2,1) : T6,4(1212) = {{0134}, {1245}, {2350}}

(1,2) : T6,3(123) =

{
{013}, {124}, {235}, {340}, {451}, {502},
{053}, {104}, {215}, {320}, {431}, {542}

Tao Gaede Combinatorics and Music
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Adjacency

We can define a graph for each Tn,k (C) with k -subsets as
vertices, which are adjacent if and only if they share all but i
elements.
Here, i = 1.

Tao Gaede Combinatorics and Music
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Tonnetz Systems and Johnson Graphs

The graph Tn,k ,i(C) is an induced subgraph of the Johnson
graph Jn,k ,i :

In Jn,k ,i all k -subsets are included, and as with Tn,k ,i(C),
the k -subsets that share all but i elements are adjacent.
Note that |Jn,k ,i | =

(n
k

)
whereas |Tn,k ,i(C)| = cn

r

So, C dramatically constrains the number of k -subsets
allowed in Tn,k (C).

Tao Gaede Combinatorics and Music
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Music Example

The subsets in T12,3,1(138) correspond to the major and minor
triads in 12-tone equal temperament harmony:
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Other Triad Tonnetz Systems

What about the rest of the triad tonnetz systems? There are 11
others! How big are they? Remember |T | = nc

r and
n = 12, k = 3.

Achiral:

{
|T (1,1,10)|, |T (228)|,
|T (255)|, |T (336)|

=
(12)(1)
(1)

= 12,

Chiral:

{
|T (129)|, |T (147)|, |T (156)|,
|T (237)|, |T (246)|, |T (345)|.

=
(12)(2)
(1)

= 24,

Achiral & Repeated Subsequence: |T (444)| =
(12)(1)
(3)

= 4.

Tao Gaede Combinatorics and Music
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Achiral T12,3,1 Graphs
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Chiral T12,3,1(2,3,7) Graph
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Chiral T12,3,1(1,4,7) Graph
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Chiral T12,3,1(3,4,5) Graph
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Chiral T12,3,1(1,2,9) Graph
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Chiral T12,3,1(1,5,6) Graph
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Chiral T12,3,1(2,4,6) Graph
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Relationship: T12,3,1(2,4,6) and T6,3,1(1,2,3)

The components in T12,3,1(2,4,6) are isomorphic to
T6,3,1(1,2,3):

Tao Gaede Combinatorics and Music
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Primitive Component Conjecture

Conjecture 1:
If n = ts for some positive integers s and t , and t divides each
element in C, then

Tn,k ,i(tC) ∼= tTs,k ,i(C) (2)

That is, Tn,k ,i(tC) is isomorphic to t copies of Ts,k ,i(C). Also
seems true that T (tC) ∼= tT (C).

Example: T12,3,1(3,3,6) ∼= 3T4,3,1(1,1,2)

Tao Gaede Combinatorics and Music
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Relating Composition Transformations to Tonnetz
Graphs

Relationships between compositions can correspond to
relationships between their induced tonnetz systems and
graphs.

We will look at composition complement and
concatenation
These seem to suggest corresponding isomorphisms
between tonnetz system graphs

Tao Gaede Combinatorics and Music



Introduction
Tonnetz Systems

Definitions and Basic Properties
Basic Properties
Music Examples
Questions/Conjectures

Composition Complementation

Let C = (c1, c2, ..., ck ) be a composition in some rotation, then
we define the complement of C as C = b−1(s(b(C))) where

1 To binary: b(C) = (10c1−1,10c2−1, ...,10ck−1)
2 Swap bits: s(C) swaps 1s for 0s and 0s for 1s, and
3 To Base Ten: b−1(C) converts every subsequence of the

form (10j−1) into (j)

For example: (138) = (121111113)

(1,3,8) = b−1(s(b((1,3,8))))

= b−1(s(110010000000)) = b−1(001101111111)
= (1,2,1,1,1,1,1,1,3) = (111111312)

Tao Gaede Combinatorics and Music
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Tonnetz Complement

Define T (C) to be the set system derived by taking the
complement of every set in T (C) relative to [n].
T (C) is called the tonnetz system complement of T (C).
Observation:

Tn,k (C) = Tn,n−k (C)

Tao Gaede Combinatorics and Music
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Tonnetz Complement Example

T12,3,1(138) ∼= T12,9,1(111111312)

Tao Gaede Combinatorics and Music
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Complement Conjecture

Conjecture 2: If Tn,k (C) is a Tonnetz system and
i ≤ min{k ,n − k}, then

Tn,k ,i(C) ∼= Tn,k ,i(C)

If true, then we automatically learn a lot about T (C) just by
studying T (C).

Tao Gaede Combinatorics and Music
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Concatenation

Let Tn,k (x) be a tonnetz system and r a positive integer, then
we can use concatenation on compositions to define a
transformation G (for grow) on Tonnetz systems as follows:

G(Tn,k (x), r) = Trn,rk (x r ) (3)

For each set S in Tn,k (x), we define S′ = S + n, and include S′

into S. We apply this process r − 1 times.
For example, G(T6,3(123),2) = T12,6(123123)

Tao Gaede Combinatorics and Music
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G(T6,3,1(123),2) = T12,6,2(123123)

For example, G(T6,3,1(123),2) = T12,6,2(123123)
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Generalizing to Conjectures

Conjecture 3: Let n, k , i ∈ Z+ such that 1 ≤ i ≤ k ≤ n.
Then ∀r ∈ Z+,

Tn,k ,i(C) ∼= Trn,rk ,ri(Cr )

If true, then can use G to define an ER and study
representatives with minimal parameters.
Conjecture 4: Let T (C) be a tonnetz system with C = x r .
If r > 1, then its Johnson subgraph for i = 1 consists
entirely of isolated vertices.

If true, then maybe always true when i < r?
Tao Gaede Combinatorics and Music
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Summary

How to think about harmonies in terms of sets
Using integer compositions to constrain the shape of
sets/harmonies
Introduction to Tonnetz systems and their graphs and my
various questions

I hope you enjoyed the talk!

If you have any thoughts, reflections or ideas, let me know!
taogaede@uvic.ca
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EXTRA: Union of Tonnetz Systems

What do we get when we take the union of Tonnetz
systems?
Sometimes we get cool Johnson subgraphs like the one on
the next slide.
It’s not obvious to me what sort of graph we should expect
associated with given union of Tonnetz systems.
However, we do know that the intersection of any pair of
tonnetz systems is empty.

Example: T (1,3,8) ∪ T (3,4,5) has an associated 48 vertex
7-regular Johnson subgraph.
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T (1,3,8) ∪ T (3,4,5) Graph
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